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Abstract: The Acquired Immunodeficiency Syndrome (AIDS) constitutes the main infectious cause of death in adults 

worldwide. Epidemiological data suggest the existence of differences in viral load and CD4
+
 T lymphocytes cell counts 

related to gender. Women have more favorable clinical and viro-immunological patterns than men in early infection, 

although once established the infection these patterns are reversed.  

Increasing evidence shows that estradiol (E) and progesterone (P) participate in the regulation of several infections, such 

as that produced by human immunodeficiency virus (HIV). Several functions of these hormones involve the interaction 

with their intracellular receptors (ER and PR, respectively). During infection, E and P not only exert their action upon the 

immune system, but also directly act on the virus. Effects of E and P depend on their concentration or the phase of HIV 

infection but in general terms, they could exert a protective role against HIV infection. 
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INTRODUCTION 

 Estradiol (E) and progesterone (P) play a fundamental 
role in different reproductive and non reproductive 
processes, such as ovulation, sexual behavior, pregnancy, 
neuroprotection, learning and memory, as well as immune 
response [1]. E and P functions are mainly exerted via their 
intracellular receptors, which modify gene expression pattern 
in the cell, although these hormones can also act by a non 
genomic pathway that implicates the modification of 
transduction signal pathways [2, 3].  

 E and P have a role in the regulation of immune 
response. E has anti-inflammatory effects. In T lymphocytes 
cells, macrophages and dendritic cells, this hormone inhibits 
the production of tumor necrosis factor-alpha (TNF- ), 
interleukin (IL)-1 , and IL-6. E also induces the production 
of IL-4, IL-10 and transforming growth factor beta (TGF- ). 
During the proliferative phase of the menstrual cycle when 
the pick of E occurs, TNF-  and interferon-gamma (IFN- ) 
levels are reduced [4-7]. 

 In the case of innate immune response, P inhibits the 
activation of nuclear factor kappa B (NF- B) and increases 
the expression of the suppressor of cytokine signaling 
(SOCS1) protein [8]. P treatment of lipopolysaccharide 
(LPS)-activated, mature bone marrow-derived dendritic cells 
(BMDCs) suppresses production of the pro-inflammatory 
response-promoting cytokines TNF-  and IL-1  in a dose-
dependent manner but it does not affect the production of the 
pro-inflammatory response-inhibiting cytokine IL-10. The  
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immunoregulatory effect of P by the suppression of pro-
inflammatory response-promoting cytokine production is 
mediated via its nuclear receptor (PR) [9]. Hormonal 
environment could influence HIV-1 disease progression by 
two ways: 1) altering the host immune system or 2) through 
direct effects on the virus [10-13]. In this paper we review 
the role of E and P in HIV infection.  

MECHANISM OF ACTION OF E AND P 

 E and P are mainly synthesized in ovary, adrenal gland, 
placenta and the central nervous system (CNS) [14]. Once 
released, P passes to the blood stream where it circulates 
either unbound or bound to plasmatic proteins such as 
albumin or globulin [15]. Two main mechanisms have been 
described: the classical and the non-classical one [16]. In the 
non-classical mechanism, these hormones exert their action 
on the plasmatic membrane modifying ion conductance and 
inducing second messengers’ production including cyclic 
adenosine monophosphate (cAMP) and the activation of 
kinases [17]. 

 Many actions of E and P are mediated by the classical 
mechanism of action that involves their specific nuclear 
receptors, ER and PR, respectively, which are members of 
the nuclear receptor superfamily of ligand-dependent 
transcription factors [18]. Two main PR isoforms have been 
reported in humans: a full-length form (PR-B, 114 kDa) and 
an N-terminal truncated form (PR-A, 94 kDa), which are 
encoded by the same gene, but are regulated by distinct 
promoters [19]. In general, PR-B is a much stronger 
transcriptional activator than PR-A, due to an additional 
activation function (AF) domain in the amino terminus of 
PR-B [20]. Intracellular ER exists as two subtypes, ER-  (66 
kDa) and ER-  (55 kDa), which are transcribed from 
different genes [21]. Cell culture experiments indicate that 
ER-  is a stronger transcriptional activator than ER-  due to 
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differences in the AF-1 region of the amino terminus [22]. It 
has been shown that PR and ER isoforms are functionally 
distinct in terms of their ability to activate target genes in the 
same cell and regulate different physiological and 
pathological processes. 

 According to the classical model of ER and PR action, in 
the absence of ligand, nuclear receptors are associated with 
heat shock proteins (HSP70 and HSP90). When the hormone 
interacts with its specific intracellular receptor, it induces 
conformational changes that allow the dissociation with 
HSP; promoting dimerization, phosphorylation and high 
affinity binding to specific DNA sequences named hormone 
responsive elements (HRE) located within the regulatory 
regions of target genes. ER and PR modulate target gene 
transcription by recruiting components of the basal 
transcriptional machinery and by interacting with 
coregulatory proteins. Nuclear receptor coregulators 
(coactivators or corepressors) are required by the receptors 
for efficient transcriptional regulation [17]. ER and PR can 
also modulate the expression of genes without directly 
binding to DNA, by tethering to other transcription factors, 
including specificity protein 1 (Sp1), activator protein 1 
(AP1) and NF- B, that interact with gene promoters that 
lack canonical HRE sequences [23, 24]. 

 Besides the above mentioned intracellular receptors 
different P receptors have been identified in the plasma 
membrane (mPR). Through the interaction with these mPRs, 
P induces rapid non genomic responses in target cells. The 
mPRs are localized in different cells such as human sperm, 
myometrial cells, granulose cells, leukocytes and T 
lymphocytes [25]. The mPR family of proteins has seven 
integral transmembrane domains and mediates signaling via 
G-protein coupled pathways [26]. E can also associate with 
G protein-coupled estrogen receptor-1 (GPR30), a seven 
transmembrane receptor, and activate the trimeric G protein. 
The data obtained using GPR30 KO mice and the G-1, a 
GPR30 agonist, indicate that GPR30 plays an important role 
in the cardiovascular and immunological systems [27, 28]. 

ROLE OF E AND P IN THE ACQUIRED IMMUNODE-

FICIENCY SYNDROME  (AIDS) 

 AIDS is the main infectious cause of death in adults 
across the world, and it is one of the major health problems 
worldwide. Epidemiological data show that 33.4 million 
people live with HIV worldwide in 2008 [29] (UNAIDS, 
2009).  

 Epidemiological data suggest differences in levels of 
viral load and CD4

+
 T cells related to gender. It has been 

observed that women have a better prognosis in early stages 
of infection compared with men, but once the infection is 
established this behavior is reversed, and women exhibit a 
greater progression to AIDS than men [30, 31]. There are 
viral factors such as the strain, viral load and long terminal 
repeated (LTR) promoter or LTR activation, as well as host 
factors such as vaginal microenvironment, levels of 
cytokines and presence of coreceptors (CCR5 or CXCR4) 
that determine the susceptibility and progression of HIV 
infection [32-35].  

 Sex hormone variations during menstrual cycle have 
effects on the properties and the number of immune cells, 
cytokines, chemokines secretion, antibodies production and 
antigen presentation [36], which can influence susceptibility 
and progression of HIV infection.  

 Results obtained in our laboratory showed that E and P 
levels are within normal values during menstrual cycle in 
healthy (SN) and HIV seropositives (TP) women during the 
early proliferative phase (days 2-3 of menstrual cycle) and 
although E levels showed no significant differences between 
SN and TP women, P levels were higher in SN. Previous 
studies performed in HIV infected women have shown that 
the length of the menstrual cycle and the duration of the 
menstrual bled were not different from non-infected HIV 
patients, suggesting that most HIV-infected women have 
normal ovulatory and menstrual cycles and have no 
significant alterations in the hypothalamus-pituitary-ovary 
axis [37, 38]. In agreement with our data, Cu-Uvin et al., 
reported normal levels of E and P during the menstrual cycle 
in both SN and TP women [39].  

 Postmenopausal women (that have very low E and P 
levels) have a 4-8 fold increase in their risk of being infected 
with HIV compared with premenopausal women [40, 41]. 
Besides, women exposed to oral contraceptive pills or depo-
medroxyprogesterone acetate (DMPA) had an increased 
progression disease than women using other contraceptive 
method [42]. 

ROLE OF E IN HIV INFECTION 

 Sexual intercourse is the main HIV route of transmission. 
E has anti-inflammatory and proliferative effects in vaginal 
stratified epithelium which can modulate the susceptibility 
and progress of HIV infection. E induces thickening of the 

Table 1. Effects of P on the Content of CCR5 and CXCR4 in PBMC from SN and TP 

 CCR5 CXCR4 

 SN TP SN TP 

V 100 % 100 % 100 % 100 % 

P 10 nM - 24 ± 0.9+ - 31 ± 4.5*+ + 78 ± 11.1+ + 26 ± 2.8+* 

P 100 nM - 28 ± 3.6+ - 41 ± 5.8*+ + 119 ± 12.1+ + 64 ± 1.8+* 

RU 486 (1 M) - 4.5 ± 13.7 - 10 ± 15.5 + 25 ± 4.0+ + 24 ± 1.8+ 

P + RU - 32 ± 9.1+ - 42 ± 10.6+ + 84 ± 10.1+ + 66 ± 3.77+* 

SN: healthy women; TP: HIV seropositives. The results are expresed as percentage average ± S.E.M. +p<0.05 vs V; *p<0.05 vs SN, Mann-Whitney U test n = 4. 
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vaginal stratified epithelium in women and female macaques 
[43- 48]. The increase in thickness might block the access of 
the virus to target cells such as Langerhans cells (LCs), 
CD4

+
 T cells, and macrophages. At local level, it has been 

observed an inverse correlation between vaginal epithelium 
thickness and rate of infection with HIV [43, 45, 49]. E also 
produces a change in vaginal pH that is not favorable for 
HIV infection. In ovariectomized rhesus macaques, the 
pretreatment with E and the subsequent no traumatic vaginal 
inoculation with simian immunodeficiency virus (SIV) 
results in a protection against infection with SIV due to 
increased epithelial thickness [31].  

 E can regulate HIV expression through the long terminal 
repeated (LTR) promoter or by the regulation of accessories 
HIV protein, such as Tat [50, 51]. The stimulation of 
cultured human vascular endothelial cells with HIV Tat 
protein specifically activates transcription factor NF- B and 
leads to the up-regulation of inflammatory mediators which 
is reverted by E pretreatment [51] Heron et al., found that in 
human fetal astrocyte cells (SVGA), E attenuated Tat-
induced HIV LTR promoter activation [52]. In addition to 
viral Tat proteins, transcriptional regulation of HIV-1 gene 
expression is controlled by cooperative and cell-specific 
interactions between Tat and several host-cell transcription 

factors, including AP-1, Sp1, Ets-1 and NF- B. These data 
suggest that E can modulate the transcriptional activity of 
HIV-1 [53-57]. 

ROLE OF P IN HIV INFECTION 

 The data about the effects of P on the HIV infection are 
controversial. These discrepancies could be due to different 
doses of hormone used, analyzed tissues and immunological 
conditions of studied subjects. DMPA increases 2-3 fold the 
rate of HIV-1 infection in women, and 7.7 fold the vaginal 
transmission of SIV, by a marked thinning of vaginal 
epithelium [31]. On other hand, P diminishes the infectivity 
of HIV in cultures of peripheral blood mononuclear cells 
(PBMC) [58]. 

 The entrance of HIV to the cell requires the interaction of 
the viral protein gp120 with the host CD4 receptor and at 
least the participation of one coreceptor. Several factors of 
the host have been involved in the establishment and 
development of HIV infection [59, 60] such as the presence 
of HIV coreceptors [33, 34]. 

 Diverse HIV coreceptors have been characterized, being 
the most important CC chemokine receptor 5 (CCR5, 50 
kDa) and CXC chemokine receptor 4 (CXCR4, 40.5 kDa). 

 

Fig. (1). Integration of endocrine and viral signaling in HIV transcription. Classically, ligand-activated ER and PR dimers contact with other 

transcription factors that interact in the promoter region of virus LTR to initiate transcription. Hormones also mediate non-classical gene 

transcription through extranuclear rapid activation of the c-Src, and MAPK cascade to stimulate phosphorylation of hormone receptors. ER 

or PR tether to Sp1 and AP1 to regulate HIV transcription. Additionally, rapid MAPK activation may regulate HIV transcription 

independently of ER or PR transcriptional activity. Other mechanism implicates membrane receptors that activates PI3K cascade to induce 

HIV transcription. Besides, HIV can regulate its own transcription through viral protein TAT. P can down-regulate or up-regulate the 

expression of CCR5 and CXCR4 coreceptors, respectively; E can also inhibit NF- B. 
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Both coreceptors are located in the host cell and are used by 
the virus to carry out the fusion of viral envelope with host 
cell membrane [61]. CCR5 is mainly used in early phase of 
infection by HIV strains that infect macrophages (M-HIV 
tropics or R5), while CXCR4 interacts with viruses that 
infect T lymphocytes (T-HIV tropics or R4) in the advanced 
stage of infection. It is noteworthy that a third type of virus 
can interact with both coreceptors (HIV R5X4) [62, 63]. 

 There is evidence that indicates a regulation of CCR5 and 
CXCR4 by sex hormones both in reproductive tissue and 
peripheral blood from healthy subjects [12, 58, 64-66]. The 
data about regulation of CCR5 and CXCR4 by sex hormones 
and oral contraceptives are contradictory and depend on the 
tissue, immunological activation and hormone concentration. 

 In PBMC from healthy women, P (50 ng/ml) increased 
the content of CXCR4 mRNA, in addition, it has been 
observed that during the secretory phase of the menstrual 
cycle, when levels of P are high (1.6-23 ng/ml), the number 
of CXCR4 positive cells is greater than in the proliferative 
phase of the menstrual cycle when P levels are lower (0.15-
1.4 ng/ml), while the number of CCR5 positive cells is 
higher during the proliferative phase than in secretory phase 
[65, 66]. 

 In agreement with previous reports, we observed that P 
(10 and 100 nM) has a negative effect on CCR5 expression 
in PBMC from SN and TP women, in contrast to data 
reported by Vassiliadou et al., in healthy women but with 
higher doses of P (1 and 10 M) [58]. Besides, we observed 
that P has a positive effect in the regulation of CXCR4 
expression in SN and TP women at 10 and 100 nM. 

 It is noteworthy that P can have a dual effect depending 
on its dose. Interestingly, the decrease of CCR5 expression 
was higher in TP compared with SN, both in 10 nM and 100 
nM, while the increase of CXCR4 expression was higher in 
SN than in TP (Table 1). 

 The effect of P in the regulation of CCR5 and CXCR4 is 
not PR-mediated since RU 486, a PR antagonist, did not 
block the effect of P. We cannot discard that P effects could 
be mediated through its mPRs which have been detected in 
PBMC and T lymphocytes [67]. 

 We suggest that during early stages of infection when the 
viral tropism is mainly directed to CCR5, P should play a 
protective role against HIV infection, while in advanced 
stages of infection, when the switch to CXCR4 tropism 
occurs, P should be a factor that increases the disease 
progression. This could be one of the explanations for 
differences in susceptibility and disease progression between 
women and men. 

CONCLUSION 

 E and P regulate many functions related to HIV infection 
in both host and virus. Interestingly, these hormones are able 
to directly act upon pathogens, playing an important role in 
susceptibility and progression of HIV infectious disease, by 
modifying the urogenital tract stratified epithelium or 
through the regulation of viral transcription, as well as the 
regulation of HIV coreceptors (Fig. 1). The knowledge of the 

effects and mechanisms of action of E and P may be helpful 
to have a better treatment of HIV disease. 
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